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Abstract: Environmental pollution studies conducted to monitor ambient levels and 1o quantify the concentration of various pollutants
entering a given environmental area are of great interest for possible adverse-health effects. Of particular importance in environmental
data analysis is to select appropriate probability models. The previous studies indicate that none of the probability models, including the
classical lognormal, has been identified to be superior to others in a general sense. To address this problem, the purpose of this paper
is wofold. Firstly, we introduce a generalized log-logistics distribution as a general model in fitting environmental poliutant data. The
family of the generalized log-logistics distribution include several well-known distributions in modeling data of environmental pollutant

concenirations, such as fognermal, Weibull, and gamma as special cases.

Secondly, by applying the proposed model to some

environmental data sets, we explore the possibilities of using this model as a general probability model for fitting envirenmental-quality

data.
1. Introduction

Environmental poiflution studies conducted to monitor ambient
levels and to quantify the concentration of various pollutants
entering a given environmental area are of great interest for
possible  adverse-heaith  effects. Selecting  appropriate
probability medels for the data is an important step in
environmental data analysis. These probability models may
become the basis for estimating the parameters to meet the
evolving information needs of environmental quality
management. Unfortunately, the environmental pollution data
are frequently skewed to the right; that is, they have a long tail
toward high concentration. Therefore, the validity of applying
the normal distribution for curve fitting of these type of data may
be questioned. One way of modeling this type of distribution is
to find a transformation of data values so that the tfransformed
values conform more closely to the normal distribution, and the
fogarithmic transformation is often applied in this context to
pollution data.  However, parameter estimates of the
transformed data are rarely of interest. The estimate of the mean,
for example, in the original scale of measurerent is the primary
purpose of environmental study.

A further complicarion is introduced by the fact that there are a
number of observations measured as less than detection limit
(DL} established by anatytical laboratories. The analysts may
report them as nondetect (ND) or less than detection limit (LDL)
rather than aumerical values. Even if the data are normally
distributed. the presence of left-censoring creates some
difficulties when applying classical methods because one will be
uncertain as to what to use for censored values. In practical
applications, to handle the censored data, many analysts ignore
the values of observations below the DL or set them equal to
zero, the DL or the DL divided by twe (DL/2) prior 1o
parameters estimation,  Replacing with the DL/2 implicitly
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assumes a uniform distribution between zero and the DL. But
the deletion or the replacement gives biased estimates of the
parameters, and the intensity of the bias will be worse as the
degree of censoring increases (Newman et al., 1989). Newman
et al. (1989} do not recommend the use of such technigues.

Although the lognormal distribution has been widely employed
to represent poliution concentration data, a fact that also should
be pointed out is that it is possible that other distributions might
work better. The lognormal distribution with different
parameters is sometimes appropriate. Dealing with air-quality
data, Larsen (1974) added a third parameter, an increment, to the
lognormal distribution. The third parameter is either a positive
or negative increment that is added to every observed
concentration unti! a curved log-probability plot is transformed
into a fairly straight line, Mage and Out (1978) called their
model the censored three-parameter lognormal model. Mage
and Ot do not suggest the automatic use of a particular model,
because failure to consider the validicy of the model, if
hypothesis tests are involved, can lead to predictions that are not
supported under scientific scrutiny.

Berger, Melice, and Demuth (1982) examined the goodness-of-
fit based on the extreme vajues and the median in fitting a
gamma distribution to daily atmospheric sulfur dioxide (SO2)
concenrations in the Gent region of Belgium. They found that
the gamma distribution provided a better representation of the
whole ensembie than the usual lognormal. Jakeman and Taylor
(1985) also observed that gamma models provide a better
representation of acid-gas concentrations in an induserial airshed
than does the lognormal model.

In published literatures, none of the probability models,
including the classical lognormal, has been identified to be
superior to others in a general sense. Among the general



models, the generalized log-logistic (GLL) disiribution has good
potentiat for fitting environmental potlutant data. The GLL
distribution iz an extension of the log-logistic disiribution. The
log-logistic distribution is similar in shape to the lognormal
distribution, but it may be more convenient to apply. This is
because of its greater mathematical simplicity, especially when
dealing with the censored data, Singh (1989} and Singh et. al.
(1994).

One approach 1o determining an appropriate model is o use a
very general model that includes 2 suitable model as 2 special
case. Although in environmental studies the GLL distribution is
a relatively "unknown" distribution, as mentioned earfier the
skewness and the heavy tail of the GLL distributions seem to
make it suitable for modeling environmental poliution data,
Also, the family of the GLL distribution is quite rich and
includes a number of submodels that are very commgn
distributions in fitting poliutant concentration data. Therefore,
the GLL distribution has desirable features and seems to be a
promising distribution for environmental modeling. Thus, in
this paper we propose to consider the use of the family of GLL
distributions in fitting poilutant concentration data. The famity
may provide more flexibility to fit environmental data when the
skewness, kurtosis, or other moments of the distribution fail to
conform to lognormality. Thus, the family of GLL distributions
may become a good alternative to the lognormal distribution.
The overall objective is to provide analysts, especially those whe
work in environmental areas, more latitude in selecting various
models.

By applying the proposed model to various sets of data, we
explore the possibility of using GLL distribution as 2 general
probability modet for representing environmental quality data.
For comparison purposes , we also consider the three-parameter
GLL distribution where m, = m, and m 1, denoted by
GLL(m,1); the three-parameter GLL distribution where m, = 1,
and m, =m, denoted by GLL{l,m}; the log-logistic distribution,
denoted by GLL(1,1}; and lognormal distribution.

2. Log-Mormal Distribution

The random variable X is said to have a fwo-parameter
lognermal (LN} distribution if the random variable ¥ = In &,
where 0<¥, is normally distributed with mean p and variance o
The probability density function (PDF) of Xis given by
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The cumulative distribution function {CDF} of the lognormal
distribution is
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The LN distribution has a long history of appiication in the field
of environmental poilition. A rich literature has been published
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over the past two decades. suggesting tha: pollutant
concentration data tend to be lognormally distributed. The
decision o apply the LN distribution in fitting pollutant
concentration datz can be attributed to the work of Larsen (1969,
1973, 1974). Using graphical techniques, he concluded that
regardiess of pollutant, city, or averaging time, the air
concentration distributions are approximately logrormally
distributed.  An excellent review of the history of the
applications of probability models, especialty lognormal models,
to aeromeiric data is given by Mage {1981).  Under
lognormally assumption, El-Shaarawi (1989) examined several
methods for making inferences about the levels of many metals
and organic contaminants in ambient water samples from the
Niagara River. More recently, the applications of the lognormal
model to air-, soil-, and water-quality data are presented in
considerable detail by Ot (1995},

Having developed physical mechanisms generating
environmental quality data, Ott {1995) provided an argument as
to why the LN distribution is so ubiquitous in environmental
phenomena. The LN distribution has been fitied not only for air
qguality data, but also for water quality and geological
data. Ot's expianations invebve the central limit theorem and the
diffusion iaw.

A number of investigators also considered other distributional
forms for environmental-quality data. Using the sum-of-squares
error as the goodness-of-fit criterion, Bencala and Seinfeld
{1976) showed that Weibult models produce lower values than
that of the jognormal model for five of eight CO data sets. But
they stated that the LN model is convenient from a practical
point of view. A similar study comparing the LN model with
other probability models is also carried out by other researchers,
for example, by Berger et al. (1982), Simpson, Bu, and
Jakeman (1984), Jakeman and Taylor {1985), and Taylor et al.
{1986). Georgopoulos and Seinfeld (1%82) presented a critical
review of statistical distributions, such as Weibull, gamma, and
many others, and stated that the LN distribution has been the
most popular in representing urban air poliutant concentration
data.

For more detail, the reader is referred to Warsono, Singh and
Bartolugci (1996).

3. Generalized Log-Logistic Distribution

Singh (1989) suggested a generalized log-logistic {GLL}
distribution, which is a natural extension of the log-logistic {LL)
distribution in modeling data of lung and other cancers. He also
demaonstrated the flexibility of the GLL model in fitting lung
cancer survival data. Further ittustrations of the GLL application
in modeling breast cancer survival data are given by Singh et al.
{1994).

Let a random variable X have four-parameter GLL distribution
with shape parameters m; and m,, denoted by X ~GLL{m,,m,}.



Let B(m,,m,) be the complete beta function, which is defined as
follows

Pimy Tm,)
B(m;’mz) = %..........1__.—_2_
I-'(m1 +m,)
where I' is the gamma funcrion, and

F(x) = [1 + ¢ Prawmmyn

be the log-logistic distribution function.  Then afier
simplification, the PDF of the GLL{m,,m,) distribution is given
by

o

glx) = [FEO)™ [1-Fo1™.

;cB(m},mz)
For more detail, the reader is referred to Warsono, Singh and
Bartolucci {1995},

4. Applications of Models To Data Sets - Examples

The first example is of uncensored data of mercury
concentration in ppm in |15 sample swordfish published by Lee
and Krutchkoff {1980}, The maximum-likelihood estimates of
the parameters obtained by the GLL(m,,m,) model are & =
14.0428, §§ = -5.4922, #y = 0.1192, and M, = 04342, The
95% asymptotic coafidence intervals for a. B,m, and m,
are  [13.7578,14.3278], [-5.6749,-5.3095], [0.1167,0.1217],
and [0.4094,0.4580], respectively. The GLL{m,m) fit yields
& =17.5504, [3 =-1.7498, and i = 0.1303. The 95%
asymplotic  confidence intervals for &, B, and m are
[17.1572,17.9436], [-1.9612,-1.5384], and [0.1257,0.1349],
respectively. Given in Table i are the values of log-likelihood
functions, and Akaike Information Critarion (AICY for
GLL(m;m;), GLL{m,m), GLL(m,1), GLL{1,m), GLL{1,1} and
lognermal distributions.

From Table |, it is clear that the value of the log-likelihood for
the GLL{m,,m,) distribution is considerably larger than those
using the lognormal and GLL(1,1) distributions and slightly
larger than these using the GLL{m,1), GLL(1,m), and
GLL(m,m} distributions. Note the values using the GLL(m,1),
GLL(m,1), and GLL(m,m) distributions are remarkably larger
than that of the traditicnal logaormal distributior: and of the
GLILA(E, 1) distribution is slightly larger than that of the lognormal
distribution.  Therefore, by looking of the maximum log-
likelihood values, the GLL(m,,m,) distribution seems to be a
better statistical mode! in fitting the data of mercury
conceniration.  Moreover, the AIC of the GLL{m,m,) and
GLL{m.1) distributions are considerably lower than those of log-
fogistic, GLL(1.m), and GLL(m,m) distributions. Consequently,
from the AIC value standpoint, the GLL(m,,m,) and GLL{m,1)
distributions may provide better description of the data of the
mercury concentration.

Figures 1-3 presemt graphs of the fitted CDFs of models
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superimposed on the empirical distribution function. The graphs
suggest that there is improvement in fit using the GLL
distributions, In particular, the GLL{m,m,) performs
considerably better than the lognormal, GLL(1,1), GLL{l,m), &
GLL(m,m} distributions and slightly better than the GLL{m, 1}
distribution. Notice that the other GLL distributions also appear
to 1t betier than the classical lognormal distribution.

Table |: Yalues of the log-likelihood functions and of
AIC for models fitted to mercury data

Model Log-Likelihood AlC
GLL(tm, 1)} - 81.1847 168.3694
GLL(1,m) - 855972 177.1974
GLL(m,m) - 9339988 1939976
GLL{m,m,) - 80.9181 165.8262
Lognormal - 114.1681 -

The second example uses the data on copper concentrations with
34 uncensored and 14 censored observations in the San Joaquin
Valley, California, published by Millard and Deverel {1988).
The maximum-likelihood estimates of the pararmeters obtained
using GLL{m,m,) model are &=0.6560,

= 1.8748, m, = 419214, and M, = 3.6089. The 95%
asymptotic confidence intervals for a, B, m,, and m are
[0.6551,0.6569], [1.8739,1.8758), [41.5963, 42.2465], and
[3.5251,3.6927], respectively. The GLL(m,m) fit viclds & =
0.1103, B =-0.1184, and 7 = 199.5571. The 95% asymptotic
confidence intervals for of &, B, and m are §0.11029,0.11031},
[-0.707,0.4702], and [198.4403,200.6739], respectively. Table
2 contains vaiues of log-likelthood function and AIC under
GLL(m,m,), GLL(m,m), GLL(m,1), GLL(!,m), and GLL(1,1),
log-logistic distributions, and the lognormat distribution.

From Table 2, it can be seen that the value of log-likelihaod of
GLEL(m,.m,) distribution is larger than those of the iognormal,
GLL(1,1), GLL{m,1), GLL(1,m), and GLL(m,m} distributions.
Also note that these values of other GLL distributions are larger
than that of the lognormal distribution. Hence, the GLL(tm,,m,)
model seems to be a promising model in fitting data of copper
cencentration. However, the AIC of the GLL{1,1) distribution
is slightly lower than the compared distribution. Thus, in this
case, because of mathematical simplicity, the log-logistic
distribution is preferable over the three-parameter and four-
parameter GLL distributions,



Table 2: Values of the loe-likelthood functions and of
AIC for models fitted to copper data

Model Log-Likelihood AIC
GLL(m, 1) - 96,4600 239.1120
GLLCTm) - 46.9294 239.9120
GLL({m,m} - 96,3422 238.3548
GLL(m,.my - 96.0383 240.2520
Lognormal - 100.0472 -

Figures 4-6  show graphs of fited CDFs of modeis
superimposed on the empiricat distribution fanctions. The graphs
suggest that fits using the GLL{m,m }, GLL{m.m), and
tognormal are similar,

5. Counclusion

As demonstrated In examples 1-2, in fitting environmental data,
the GLL family of distributions is a goed alternative to the
lognormal distribution. In particuiar, on the basis of the values
of maximurm log-likelihood functions, the GLL(m,,m,) seems to
be a better probability model for both data sets. Graphs of the
CDFs of the models superimposed on the empirical distribution
suggest that the GLL(in,,in,) generally appears te fit better than
the lognormal and other GLL distributions. The use of the
family of ALL distributions in fitting environmental data needs
to be investigated further.

It is interesting to note that for data of mercury concentration
with 115 sample size. the maximum log-likelihood value of
GLL(m,,m.) distribution is considerably larger than that of the
other distributions, especiaily the lognormai distribution. But for
the other data set with a much smaller sample, the improvement
in the likelibood function is slight.

The family of probability models may change significantly for
the intensity of censoring different types of pollutant, averaging
time of interest, different locations, and other factors. Hence, the
performance of GLL{m,.m.} when incorporating these factors
needs to be examined further.
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Figures 4-6: Empirical (+) and Fitted GLL and Lognormal Fuanctions - Copper Concentration Data
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